Strong Stability Preserving Two-step Runge-Kutta Methods

نویسندگان

  • David I. Ketcheson
  • Sigal Gottlieb
  • Colin B. Macdonald
چکیده

We investigate the strong stability preserving (SSP) property of two-step Runge– Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations

Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...

متن کامل

Optimal Implicit Strong Stability Preserving Runge–Kutta Methods

Strong stability preserving (SSP) time discretizations were developed for use with the spatial discretization of partial differential equations that are strongly stable under forward Euler time integration. SSP methods preserve convex boundedness and contractivity properties satisfied by forward Euler, under a modified time-step restriction. We turn to implicit Runge–Kutta methods to alleviate ...

متن کامل

Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations

Strong stability-preserving (SSP) Runge–Kutta methods were developed for time integration of semidiscretizations of partial differential equations. SSP methods preserve stability properties satisfied by forward Euler time integration, under a modified time-step restriction. We consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restrictions, first for the cas...

متن کامل

Strong Stability-Preserving High-Order Time Discretization Methods

In this paper we review and further develop a class of strong-stability preserving (SSP) high-order time discretizations for semi-discrete method-of-lines approximations of partial di erential equations. Termed TVD (total variation diminishing) time discretizations before, this class of high-order time discretization methods preserves the strong-stability properties of rst-order Euler time step...

متن کامل

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2011